1,328 research outputs found

    Tuning surface metallicity and ferromagnetism by hydrogen adsorption at the polar ZnO(0001) surface

    Full text link
    The adsorption of hydrogen on the polar Zn-ended ZnO(0001) surface has been investigated by density functional {\it ab-initio} calculations. An on top H(1x1) ordered overlayer with genuine H-Zn chemical bonds is shown to be energetically favorable. The H covered surface is metallic and spin-polarized, with a noticeable magnetic moment at the surface region. Lower hydrogen coverages lead to strengthening of the H-Zn bonds, corrugation of the surface layer and to an insulating surface. Our results explain experimental observations of hydrogen adsorption on this surface, and not only predict a metal-insulator transition, but primarily provide a method to reversible switch surface magnetism by varying the hydrogen density on the surface.Comment: 4 pages, 3 figure

    Pleuritis en la Valencia romana

    Full text link
    X Congreso Nacional de PaleopatologĂ­a. Univesidad AutĂłnoma de Madrid, septiembre de 200

    Magnetism and half-metallicity at the O surfaces of ceramic oxides

    Get PDF
    The occurence of spin-polarization at ZrO2_{2}, Al2_{2}O3_{3} and MgO surfaces is proved by means of \textit{ab-initio} calculations within the density functional theory. Large spin moments, as high as 1.56 ÎĽB\mu_B, develop at O-ended polar terminations, transforming the non-magnetic insulator into a half-metal. The magnetic moments mainly reside in the surface oxygen atoms and their origin is related to the existence of 2p2p holes of well-defined spin polarization at the valence band of the ionic oxide. The direct relation between magnetization and local loss of donor charge makes possible to extend the magnetization mechanism beyond surface properties

    Automatic system for the determination of metals by anodic stripping potentiometry in non-deaerated samples

    Get PDF
    An automatic system for the determination of Zn, Cd, Pb and Cu by anodic stripping potentiometry using the oxygen dissolved in the sample as oxidant is reported. The system relies on the use of a PC-compatible computer for instrumental control and data acquisition and processing

    Enhanced electron correlations, local moments, and Curie temperature in strained MnAs nanocrystals embedded in GaAs

    Full text link
    We have studied the electronic structure of hexagonal MnAs, as epitaxial continuous film on GaAs(001) and as nanocrystals embedded in GaAs, by Mn 2p core-level photoemission spectroscopy. Configuration-interaction analyses based on a cluster model show that the ground state of the embedded MnAs nanocrystals is dominated by a d5 configuration that maximizes the local Mn moment. Nanoscaling and strain significantly alter the properties of MnAs. Internal strain in the nanocrystals results in reduced p-d hybridization and enhanced ionic character of the Mn-As bonding interactions. The spatial confinement and reduced p-d hybridization in the nanocrystals lead to enhanced d-electron localization, triggering d-d electron correlations and enhancing local Mn moments. These changes in the electronic structure of MnAs have an advantageous effect on the Curie temperature of the nanocrystals, which is measured to be remarkably higher than that of bulk MnAs.Comment: 4 figures, 2 table
    • …
    corecore